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Abstract—In database of recommender systems, users’ ratings
for most items are usually missing, resulting in selection bias
when users selectively choose items to rate. To address this prob-
lem, propensity-based methods, e.g., inverse propensity scoring
and doubly robust, have been widely studied and applied to
missing rating prediction and post-click conversion rate predic-
tion tasks. However, have we completely eliminated the selection
bias? Under what missing data mechanism can previous studies
completely eliminate the selection bias and lead to unbiased
learning? In this paper, following the previous literature on
statistics, we first formally define three missing data mechanisms,
i.e., missing completely at random (MCAR), missing at random
(MAR), and missing not at random (MNAR), and discuss
the widespread prevalence of MNAR in recommender systems.
Next, we theoretically reveal that the unbiasedness of previous
propensity-based debiasing methods is valid only when data are
MCAR or MAR, while it leads to biased predictions when data
are MNAR. To tackle this research gap, we propose to disentangle
user and item embeddings into the primary latent vector for
rating prediction and the auxiliary latent vector for missing
mechanism modeling. We prove the identifiablility results, and
show that the proposed method can achieve unbiased learning
under MNAR with imposed constraints. Extensive experiments
are conducted on a semi-synthetic dataset and three real-world
datasets, validating the effectiveness of our proposed method.

Index Terms—Recommender system, Identification, Selection
bias, Propensity, Missing not at random

I. INTRODUCTION

Recommender systems (RS) aim to solve the problem of
information overload by filtering out items that are preferred
by users from its log database [1]–[4]. By utilizing structured
data stored in the database containing information about user
features, item attributes, and interaction records (e.g., clicks
and ratings), RS can make personalized recommendations for
each user, which has been widely used in areas such as
education, business, and entertainment [5]–[8]. However, the
interactions recorded in the database were found to suffer from
selection bias [9]–[12], due to the (i) system filtering strategy
at the deployment phase, and (ii) user selection preference

during the interactive process, which can significantly affect
the quality of RS [5], [10], [13], [14]. In addition, selection
bias is considered one of the key challenges in many RS tasks,
such as rating prediction [6], [15], post-click conversion rate
prediction [16]–[18], and post-view click-through&conversion
rate prediction [16], [18], [19]. For example, in the rating
prediction task, users always choose the favored items to
rate, while other unrated items are not considered missing
randomly. Hence, there is a significant difference between the
distribution of observed events and missing events, causing a
severe obstacle for unbiased predictions [15], [20]–[26].

Specifically, the missing mechanisms of selection bias in
RS can be divided into three categories [27]–[29]. As shown
in Figure 1, the first category is missing completely at random
(MCAR), that is, the probability of missingness is independent
of the observed data (including both the features and the
ratings). In such cases, the observed data can be regarded as a
representative of the target population, thus the selection bias
vanishes. The second category is missing at random (MAR),
in which the probability of missingness depends only on the
features of the users and items, which can be fully observed.
Most studies that eliminate selection bias are limited to data
MAR [30]–[32]. The third category is missing not at random
(MNAR), that is, the probability of missingness depends
on both the (observed) features and the (partially observed)
ratings, where missing ratings pose a serious challenge for
current debiasing methods.

Traditional methods for addressing selection bias mainly fall
into two groups. The first very diverse group includes a data
imputation module which aims at estimating the missing data.
These techniques employ heuristic methods [33] as well as
learning-based models [15]. The second group utilizes inverse
propensity score (IPS) methods to reweight observed data
during training, based on the estimated probability of their
observation [6]. To capitalize on the advantages offered by
both approaches, the doubly robust (DR) joint learning [15]
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is proposed to effectively reduce the estimation error. Despite
the efforts of existing propensity-based methods to mitigate
selection bias, ratings are almost MNAR, not MAR, and also
the learned propensities are easily mis-specified [34], which
leads to the lack of identifiability and unbiasedness guarantees.

In light of this, we raise several research questions which
aim at uncovering the limitations of eliminating selection
bias in RS. Could the existing propensity-based debiasing
methods ensure the identifiability of the propensity when data
is MNAR? Besides, under what missing data mechanism can
previous studies completely eliminate the selection bias and
lead to unbiased learning?

To answer the above questions, in this paper, we first reveal
that the unbiasedness of previous propensity-based debiasing
methods holds only when data are MCAR or MAR, while it
leads to biased predictions when data are MNAR. We then
provide a comprehensive discussion on how to determine the
parameters of interest when learning propensities to enable
unbiased learning under all three missing data mechanisms.
Based on the parameters of interest under data MNAR, we
propose a novel disentanglement approach based on collab-
orative filtering, which ensures the identifiability in MNAR
scenarios. Such identifiability guarantees the uniqueness and
the learnability of the propensity model when the auxiliary
variables are correctly disentangled, then we have sufficient
information for accurate estimation of the propensities.

We further propose a multi-task learning method to dis-
entangle auxiliary embeddings and learn propensities simul-
taneously under data MNAR. In contrast to previous studies
with hard sharing or no sharing of embeddings between the
propensity and the prediction model, the proposed method
partially shares the embeddings of the propensity model and
the prediction model to estimate propensities. Meanwhile,
the training signals of the unsharing part of the propensity
model are given by the disentangled embeddings. We also
theoretically demonstrate that the proposed method inherits
identifiability and is unbiased under data MNAR. Experiments
on a semi-synthetic dataset and three real-world datasets
validate the effectiveness of the proposed method.

The contributions of this paper can be summarized below:
• We formally define the three missing da ta mechanisms

and show that the previous propensity-based debiasing
methods are unbiased only under data MAR or MCAR.

• We develop a novel disentanglement approach to the
propensity model by introducing an auxiliary variable,
which ensures the identifiability of the learned propensi-
ties and unbiasedness under data MNAR.

• We further propose a multi-task learning method, which
partially shares the embeddings between the prediction
model and the propensity model to learn the auxiliary
embeddings and the MNAR propensities simultaneously.

• We conduct extensive experiments on one semi-synthetic
dataset and three real-world datasets, including a publicly
available large-scale industrial dataset, and the experi-
mental results demonstrate the superiority of the proposed
method in recommendation accuracy and efficiency.

II. PROBLEM SETTING AND NOTATION

We now formulate the rating prediction task in the pres-
ence of selection bias. Let U = {u1, u2, ..., uM} and I =
{i1, i2, ..., iN} be the sets of M users and N items, respec-
tively. For each user-item pair (u, i), let xu,i be the feature
vector of user u and item i, and ru,i be the rating of user u
on item i. In fact, users select only a small subset of items
to rate, and most of the ratings are missing. Define ou,i as
the observing indicator of ru,i, where ou,i = 1 means that
the rating ru,i is observed in the collected data and ou,i = 0
otherwise. Let D = U ×I be the set of all user-item pairs and
O = {(u, i) ∈ D : ou,i = 1} be the set of observed user-item
pairs, we aim to predict the ratings ru,i for all (u, i) ∈ D.

Let r̂u,i = f(xu,i; θ) be a rating prediction model param-
eterized by θ. Ideally, if all ratings were observed, the ideal
loss function for training the prediction model is defined as

Lideal(θ) =
1

|D|
∑

(u,i)∈D

eu,i, (1)

where eu,i is the prediction error. For example, the squared
loss eu,i = (r̂u,i − ru,i)

2. However, optimizing Lideal(θ) is
infeasible due to the missing ratings {ru,i : ou,i = 0}.

A naive method for training the prediction model is to
discard the missing events directly and only use the observed
ratings. The corresponding loss is

ENaive(θ) =
1

|O|
∑

(u,i)∈O

eu,i. (2)

It is well known that ENaive is an unbiased estimator of
Lideal(θ) only when the missing mechanism is MCAR, that
is, the observed user-item pairs can represent the target popu-
lation. However, due to the presence of selection bias, the data
collected in RS cannot be used as a representative sample of
the entire user-item matrix, which is regarded as our target
population, resulting in ENaive(θ) being biased.

To tackle this problem, many debiasing methods have been
proposed [9], [35], but notably, the unbiasedness of these
methods is highly dependent on the missing data mechanisms.
In the following, we describe the various missing mechanisms
via causal graphs and then the debiasing methods in details.

III. ANALYSIS OF MISSING DATA MECHANISM

In this section, we first introduce the definition of causal
graphs [36], [37], which helps to understand and formally
analyze three missing data mechanisms in RS [27]–[29], [38].
Then we show that the existing propensity-based debiasing
methods are biased under data MNAR.

A. Missing Mechanisms Illustration via Causal Graphs

Causality aims to study causal dependence rather than
correlation between variables, which has gained considerable
attention in the database community in recent years [39], [40],
such as recommender systems [1], [41] and SQL queries [42],
[43]. Causal graph offers an effective tool to intuitively
describe causal relationships between variables by using a
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(a) MCAR (b) MAR (c) MNAR (d) Disentangling on MNAR

Fig. 1: Typical causal graphs for different missing mechanisms, where the grey circle indicates that the variable is partially
observed. The proposed method also works if the arrow direction between xu,i and zu,i is reversed.

directed acyclic graph, where nodes represent variables and
directed edges represent potential direct causal effects [36],
[37]. When there are no edges, it means that there is no direct
effect between the variables.

Figures 1(a)-(c) show the causal graphs of three missing
data mechanisms: missing completely at random (MCAR),
missing at random (MAR), and missing not at random
(MNAR), under which the challenge of achieving unbiased
learning increases. The causal graph consists of three vari-
ables: the user and item features xu,i, the rating of user to the
item ru,i, and the rating observing indicator ou,i. In RS, users
usually have different preferences for items, leading to differ-
ent ratings, which can be expressed as xu,i → ru,i. To collect
MCAR data, we may ask users to rate randomly selected
items, thus neither xu,i nor ru,i have a causal effect on ou,i.
Compared to the MCAR, the MAR considers the influence
of user and item features on the rating indicator, accounting
for the self-selection by the users, denoted as xu,i → ou,i.
As the most general missingness mechanism, MNAR further
considers the effect of user preferences (reflected in ratings) on
sample selection, e.g., some users choose their favorite items
to rate, which can be given as ru,i → ou,i.

B. Missing Mechanisms Analysis

MCAR: the observing indicator ou,i is completely inde-
pendent of the rating ru,i and feature xu,i, i.e., P(ou,i =
1|xu,i, ru,i) = P(ou,i = 1) is a constant, or equivalently,
ou,i ⊥⊥ (ru,i, xu,i). In RS, the data collected by a random
logging policy or A/B test [44]–[47] is MCAR, since the
observing indicator can be regarded as the results of a random
coin toss, and thus unrelated to both the rating and feature. For
MCAR data, the distributions of observed events and missing
events are the same, thus the selection bias vanishes and the
naive estimator ENaive(θ) is unbiased.

MAR: the missing probability depends only on the fully
observed features xu,i, i.e., P(ou,i = 1|xu,i, ru,i) = P(ou,i =
1|xu,i), or equivalently, ou,i ⊥⊥ ru,i | xu,i. In RS, the data
collected by a given recommendation policy are MAR, because
the recommendation policy decides whether to expose an item
to a user relies only on the fully observed features. A typical
task is post-view click-through rate (pCTR) prediction [48],
where whether an item is exposed to a user depends on a given

exposure policy based on the information observed about the
item and the user.

MNAR: the missing probability depends both the fea-
tures xu,i and the unobserved rating ru,i, i.e., P(ou,i =
1|xu,i, ru,i) ̸= P(ou,i = 1|xu,i), or equivalently, ou,i ̸⊥⊥ ru,i |
xu,i. In RS, data MNAR is the most common case, as users
are free to choose which items to interact with. For example,
in the task of rating prediction [6], [49], [50], users prefer
to rate items they like, and thus, whether a user’s rating is
observed depends on the value of the rating itself, thus the
collected ratings are MNAR.

In a nutshell, MCAR is the simplest case where there
is no bias, and the naive estimator is sufficient to achieve
unbiasedness. For MAR, the missing probability is only based
on fully observed features xu,i, thus it can be accurately
estimated by modeling ou,i using xu,i. Unfortunately, it is
very difficult to achieve unbiasedness under data MNAR, since
many ratings ru,i are missing and have a direct effect on ou,i.

One may argue that we can first impute the missing ratings
based on the observed ratings and then model the observing
probability P(ou,i = 1|xu,i, ru,i) using both the observed
ratings and imputed ratings. However, such a strategy also fails
under data MNAR. Specifically, the missing data mechanism
ou,i ̸⊥⊥ ru,i | xu,i implies that

P(ru,i|xu,i, ou,i = 1) ̸= P(ru,i|xu,i, ou,i = 0),

which indicates the imputation model trained based on the
observed events O cannot extrapolate to the missing events
D\O, i.e., imputing the missing ratings is infeasible. This fur-
ther demonstrates the difficulty of achieving unbiased learning
when using propensity-based methods under data MNAR.

C. Previous Propensity-Based Estimators under Data MNAR

Many propensity-based methods have tried to develop un-
biased estimators of the ideal loss Lideal(θ), and then train
the prediction model by minimizing the estimated loss. For
example, the inverse propensity score (IPS) estimator is

EIPS(θ) =
1

|D|
∑

(u,i)∈D

ou,ieu,i
p̂u,i

, (3)
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TABLE I: Unbiasedness of MCAR, MAR, and MNAR propen-
sities under different missing data mechanisms, where ✓ and
× denote the unbiased and biased results, respectively.

Propensity MCAR MAR MNAR

MCAR propensity P(o = 1) ✓ × ×
MAR propensity P(o = 1|x) ✓ ✓ ×
MNAR propensity P(o = 1|x, r) ✓ ✓ ✓

where p̂u,i is an estimate of propensity score pu,i ≜ P(ou,i =
1|xu,i). By further imputing the prediction errors, the doubly
robust (DR) estimator is

EDR(θ) =
1

|D|
∑

(u,i)∈D

[
êu,i +

ou,i(eu,i − êu,i)

p̂u,i

]
, (4)

where êu,i is an estimate of gu,i ≜ E[eu,i|xu,i], i.e., it
predicts eu,i using xu,i. IPS and DR methods show competing
performance in practice and have been widely studied for
debiasing [6], [15], [17], [35], [51], [52], with the following
conditions for achieving unbiasedness under data MAR.

Lemma 1. Under data MAR, EIPS(θ) is an unbiased estima-
tor of Lideal(θ) if all learned propensities are accurate, i.e.,
p̂u,i = pu,i, and EDR(θ) is an unbiased estimator if either all
the learned propensities or all the imputed errors are accurate,
i.e., p̂u,i = pu,i or êu,i = gu,i.

However, EIPS(θ) and EDR(θ) fail to achieve unbiasedness
under data MNAR, because the underlying target propensity
is mismatched to the missing data mechanism. Table I sum-
marizes the correspondence between target propensity, missing
mechanisms, and unbiasedness of propensity-based estimators.
Specifically, we define the MNAR propensity p̃u,i as

p̃u,i ≜ P(ou,i = 1|xu,i, ru,i), (5)

while call pu,i = P(ou,i = 1|xu,i) the MAR propensity.
Intuitively, the observing indicator ou,i depends on both xu,i

and ru,i under data MNAR, while the MAR propensity pu,i is
a function of only xu,i that is not able to capture the influence
of ru,i on ou,i. Therefore, the MAR propensity pu,i leads
to biased predictions when using the previous IPS and DR
estimators under data MNAR. However, the unbiasedness of
the IPS and DR estimators under data MNAR can be achieved
if the MNAR propensity is used.

Lemma 2. (a) Under data MNAR, both the IPS and DR esti-
mators are biased when using the MAR propensity p̂u,i = pu,i;
(b) Under data MNAR, both the IPS and DR estimators are
unbiased when using the MNAR propensity p̂u,i = p̃u,i.

In practice, we usually train the propensity model by
fitting ou,i using the fully observed xu,i, such as logistic
regression or a neural network [6], [50], [52] with variance
regularization [17], [51], [53]. However, previous studies only
focus on estimating the MAR propensity instead of the MNAR
propensity, which leads to biased estimations. In fact, obtain-
ing accurate estimates of the MNAR propensity by fitting ou,i

with xu,i is a very difficult task due to the partially missing
ru,i, which can be illustrated from a geometric perspective:
p̃u,i is a point on the space spanned by both xu,i and ru,i,
while p̂u,i (obtained by modeling ou,i with xu,i) is a point on
the space spanned by xu,i. Therefore, p̂u,i always has a gap
with p̃u,i as long as ru,i has a non-zero effect on ou,i.

IV. PROPOSED METHOD

In this section, we first reveal the identifiability problem
under data MNAR, and then propose a novel method to
disentangle an auxiliary variable to address the identifiability
problem and obtain unbiased learning. Finally, we further pro-
pose a multi-task learning approach to adaptively disentangle
a learnable auxiliary representation.

A. Identifiability Problem under Data MNAR

The essential reason for the failure of previous IPS and
DR estimators under data MNAR is the existence of the
identifiability problem. An estimand satisfies identifiability if it
can be written as a function of the distribution of the observed
data, which implies that one can use observed data to obtain
an (asymptotically) unbiased estimation [29].

Formally, the aim of debiased recommendation is to train
a prediction model r̂u,i = f(xu,i; θ) to predict ru,i, which
is equivalent to estimating P(ru,i|xu,i), as the estimand of
interest. Given the pre-defined estimand, our goal is to learn it
based on the observed data P(ou,i = 1, ru,i|xu,i), which can
be decomposed as

P(ou,i = 1, ru,i|xu,i) = P(ou,i = 1|xu,i, ru,i)P(ru,i|xu,i).

This equation indicates that the MNAR propensity P(ou,i =
1|xu,i, ru,i) could bridge the gap between the observed data
P(ou,i = 1, ru,i|xu,i) and the target estimand P(ru,i|xu,i).

Under data MAR, i.e., ru,i ⊥⊥ ou,i|xu,i, we have P(ou,i =
1|xu,i, ru,i) = P(ou,i = 1|xu,i). Note that both ou,i and
xu,i are fully observed, thus P(ou,i = 1|xu,i) can be derived
from the observed data, so does the estimand P(ru,i|xu,i).
However, under data MNAR, estimating P(ru,i|xu,i) suffers
from the identifiability problem and ignoring it will lead to
biased estimates, as shown in the following example.

Example 1. Consider the following two sets of models:

model (a)

{
P1(ou,i = 1|ru,i, xu,i) = σ(−4 + 2ru,i)

P1(ru,i|xu,i) = ϕ(ru,i − 1),

model (b)

{
P2(ou,i = 1|ru,i, xu,i) = σ(4− 2ru,i)

P2(ru,i|xu,i) = ϕ(ru,i − 3),

where σ(·) is the sigmoid function, ϕ(·) is the density of the
standard normal distribution.

We show that one cannot distinguish whether the true
MNAR propensity is P1(ou,i = 1|ru,i, xu,i) or P2(ou,i =
1|ru,i, xu,i) based on the observed data, i.e., p̃u,i suffers from
the identifiability problem.
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The reason is that models (a) and (b) can generate the same
observed data distribution that

P1(ou,i = 1|ru,i, xu,i)P1(ru,i|xu,i)

= P2(ou,i = 1|ru,i, xu,i)P2(ru,i|xu,i), (6)

which implies that both model (a) and model (b) are the
solution that maximizes the likelihood function of the observed
data, since they produce the same distribution of observed data.
Thus, the solution obtained by optimizing likelihood function
has a positive probability of being an incorrect model, which
leads to biased estimates of the ideal loss. We provide the
detailed analysis as shown below: the equation in Example 1

P1(ou,i = 1|ru,i, xu,i)P1(ru,i|xu,i)

= P2(ou,i = 1|ru,i, xu,i)P2(ru,i|xu,i)

is equivalent to

ϕ(ru,i − 3) exp(−2ru,i + 4)

1 + exp(−2ru,i + 4)
=

ϕ(ru,i − 1) exp(2ru,i − 4)

1 + exp(2ru,i − 4)

⇔ exp

{
(ru,i − 1)2 − (ru,i − 3)2

2

}
=

1 + exp(2ru,i − 4)

1 + exp(−2ru,i + 4)

⇔ exp(2ru,i − 4) {1 + exp(−2ru,i + 4)} = 1 + exp(2ru,i − 4)

⇔ exp(2ru,i − 4) + 1 = 1 + exp(2ru,i − 4).

In summary, identifiability is a prerequisite for correct and
accurate estimation of p̃u,i. If it is not satisfied, we can never
know if we are learning a correct model. It further indicates
that accurately estimating p̃u,i under MNAR is a difficult task
without additional information [54], [55].

Fortunately, as shown in Figure 1(d), we show the identifi-
ability of p̃u,i can be recovered, if we have an extra auxiliary
variable zu,i that satisfies the conditions in Assumption 1, as
shown in the following Lemma 3.

Assumption 1. (i) zu,i ⊥⊥ ru,i | xu,i; (ii) zu,i ̸⊥⊥ ou,i | xu,i.

Lemma 3. Under data MNAR, if there exists an auxiliary
variable zu,i satisfies Assumption 1, then the joint distribution
of (xu,i, ru,i, zu,i, ou,i) is identifiable if and only if

P1(ou,i = 1 | zu,i, xu,i, ru,i)

P2(ou,i = 1 | zu,i, xu,i, ru,i)
̸= P2(ru,i | xu,i)

P1(ru,i | xu,i)
, (7)

where Pj(ou,i|zu,i, xu,i, ru,i) and Pj(ru,i|xu,i) for j = 1, 2
are any two distinct candidate distributions.

Lemma 3 presents a necessary and sufficient condition
for identifiability of the joint distribution of the full data.
That is, the observed distribution P(ou,i = 1, ru,i, zu,i, xu,i)
and the joint distribution P(ou,i, ru,i, zu,i, xu,i) are one-to-one
correspondence, which avoids the unidentifiable scenario in
Example 1 and ensures that it is possible to recover the joint
distribution from the observed distribution. Based on this, the
MNAR propensity can be uniquely determined by the observed
data, which further provides the theoretic basis of the unbiased
estimation for our proposed method.

In addition, condition (7) in Lemma 3 is a relatively mild
condition, and many commonly used parametric and semi-
parametric models satisfy this condition, such as the sepa-
rable logistic and Probit models. In general, when the ratio
P1(ou,i | zu,i, xu,i, ru,i)/P2(ou,i | zu,i, xu,i, ru,i) is either a
constant or varies with zu,i for any two distinct candidate
distributions, the condition (7) always holds, which provides
a guidance to guarantee the identifiability of joint distribution.
Below, we clarify that the separable logistic model satisfies
the condition (7). For simplicity, we omit covariates xu,i in
the following theorem.

Theorem 1 (Identifiability under MNAR). Consider the sep-
arable logistic missing data mechanism:

P(ou,i = 1 | zu,i, ru,i) =
exp{q(zu,i) + g(ru,i)}

1 + exp{q(zu,i) + g(ru,i)}
. (8)

where q(·) and g(·) are unknown differentiable functions. For
example, q(·) and g(·) can take the parametric forms:

q(zu,i) = α0 + α1zu,i, g(ru,i) = β0 + β1ru,i,

where αj and βj are some unknown parameters. The above
model is separable since the conditional probability P(ou,i =
1 | zu,i, ru,i) excludes an interaction between ru,i and zu,i,
making equation (8) satisfies the condition (7).

Proof Sketch. Suppose there exist two density functions that
make the ratios equal, that is,

expit {q1(zu,i) + g1(ru,i)}
expit {q2(zu,i) + g2(ru,i)}

= h(ru,i) (9)

for some function h(ru,i), which is a function depends on ru,i
only. Taking the derivative of zu,i on both sides, and we have

∂q1(zu,i)/∂zu,i
∂q2(zu,i)/∂zu,i

[1 + exp {q2(zu,i) + g2(ru,i)}]

= 1 + exp {q1(zu,i) + g1(ru,i)} . (10)

Taking the derivative of ru,i on both sides, then we have

∂q1(zu,i)/∂zu,i
∂q2(zu,i)/∂zu,i

exp {q2(zu,i)− q1(zu,i)}

=
∂g1(ru,i)/∂ru,i
∂g2(ru,i)/∂ru,i

exp {g1(ru,i)− g2(ru,i)} .

Note that the left-hand side of the above equation is a
function of zu,i, but the right side is a function of ru,i,
therefore, we must have

∂q1(zu,i)/∂zu,i
∂q2(zu,i)/∂zu,i

exp {q2(zu,i)− q1(zu,i)} = c1,

for some constant c1. Multiply both sides of equation (10) by
exp {−q1(zu,i)}, and then

c1 [exp {−q2(zu,i)}+ exp {g2(ru,i)}]
= exp {−q1(zu,i)}+ exp {g1(ru,i)} ,
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and there is some constant c2 that satisfies

c1 exp {−q2(zu,i)}+ c2 = exp {−q1(zu,i)} ,
c1 exp {g2(ru,i)} − c2 = exp {g1(ru,i)} .

By substituting q2(zu,i)and g2(ru,i) in equation (9) with the
above expression, we get

h(ru,i) = 1 + c2 exp {−g1(ru,i)} .

Note that 1 + c2 exp {−g1(ru,i)} > 1 for c2 > 0, and 1 +
c2 exp {−g1(ru,i)} < 1 for c2 < 0. Besides, note that h(ru,i)
is the ratio of two densities, i.e. h(ru,i) = f2(ru,i)/f1(ru,i),
and so we must have c2 = 0, and thus h(ru,i) = 1. As a
result, the joint distribution is identified.

Theorem 1 provides a concrete case that is identifiable under
data MNAR. Therefore, to achieve unbiased learning under
data MNAR, it is sufficient to find an auxiliary variable zu,i
that satisfies Assumption 1 and condition in equation (7).

Notably, different from the condition in equation (6), the
condition in equation (7) is much weaker and many commonly
used models satisfy this condition, such as Logistic regres-
sion and Poisson factorization [56]. In general, condition in
equation (7) can be verified based on the adopted model and
typically holds when zu,i and ru,i have no interaction effects
on ou,i. More specific, the condition holds when the ratio
P1(ou,i | zu,i, xu,i, ru,i)/P2(ou,i | zu,i, xu,i, ru,i) is either a
constant or varies with zu,i for any two distinct distributions.

B. Disentangle the Auxiliary Variable

To address the identifiability problem of MNAR propensity,
we propose a novel method that disentangles an auxiliary
variable zu,i that satisfies Assumption 1 based on collaborative
filtering. Specifically, as shown in Figure 2, we disentangle the
feature embedding [pu,qi] into two parts xu,i and zu,i, where
pu = [p′

u,p
′′
u] is the feature embedding for user u, qi =

[q′
i,q

′′
i ] is the feature embedding for item i, xu,i = [p′

u,q
′
i]

and zu,i = [p′′
u,q

′′
i ]. Ideally, a desirable disentangling would

make xu,i and zu,i independent. Meanwhile, xu,i should have
the ability to predict ru,i, whereas the concatenation of xu,i

and zu,i should have the ability to predict ou,i. Motivated
by this, the proposed method adopts such disentanglement

(DT for short) to the previous vanilla IPS and vanilla DR
estimators, named DT-IPS and DT-DR, respectively.

For DT-IPS and DT-DR, we propose to use multi-task
learning to ensure the performance of various tasks. The
prediction model of DT-IPS is trained by minimizing the
following loss function

LDT−IPS(P,Q; θr, θo) = LIPS(P
′,Q′; θr)︸ ︷︷ ︸

Vanilla IPS loss

+ αLO(P,Q; θo)︸ ︷︷ ︸
Propensity loss

+β
(∥∥P′⊤P′′∥∥2

F
+

∥∥Q′⊤Q′′∥∥2
F

)
︸ ︷︷ ︸

Disentangling loss

+ γ
(∥∥P′Q′⊤∥∥2

F
+

∥∥P′′Q′′⊤∥∥2
F

)
︸ ︷︷ ︸

Regularization loss

,

where P = [P′,P′′] ∈ R|U |×K , Q = [Q′,Q′′] ∈ R|I|×K ,
P′ ∈ R|U |×A, P′′ ∈ R|U |×(K−A), Q′ ∈ R|I|×A, Q′′ ∈
R|I|×(K−A), and A is the hyper-parameter to control the
disentangling dimensions of xu,i and zu,i.

As shown in Figures 1(d) and 2, we use the concatenation
of xu,i and zu,i, i.e., [pu,qi], to predict ou,i. Therefore, the
propensity model is trained by minimizing the following cross-
entropy loss function

LO(P,Q; θo)

=
1

|D|
∑

(u,i)∈D

[
− ou,i · log p̂u,i − (1− ou,i) · log(1− p̂u,i)

]
,

where p̂u,i = m(pu,qi; θo) is an estimate of P(ou,i = 1 |
xu,i, ru,i). Meanwhile, we use xu,i = [p′

u,q
′
i] to predict the

rating ru,i. Thus, the LIPS(P
′,Q′; θr) is defined as

LIPS(P
′,Q′; θr) =

1

|D|
∑

(u,i)∈D

ou,ieu,i
p̂u,i

,

where eu,i = (ru,i − f(x′
u,i; θr))

2 = (ru,i − f(p′
u,q

′
i; θr))

2.

The four Frobenius norms (F norms), i.e.,
∥∥P′⊤P′′

∥∥2
F

,∥∥Q′⊤Q′′
∥∥2
F

,
∥∥P′Q′⊤

∥∥2
F

, and
∥∥P′′Q′′⊤

∥∥2
F

, play an important
role in the proposed DT-IPS loss. The core part of the
disentangling is to ensure the xu,i and zu,i to be independent.
Specifically, we need both P′ and P′′, Q′ and Q′′ independent.
However, we cannot use the inner product or cosine similarity
as the constraint because the two vectors have different lengths
when A ̸= K

2 . Therefore, we follow [57] to use the outer
product instead. When the F norm of the outer product is
zero, every element-wise product is zero, which ensures the
independence of the two vectors. In addition, the last two terms
can prevent overfitting and it will make the contribution of
all features more dispersed, instead of leaving some features
completely dominant.

For the DT-DR method, we need the error imputation model
êu,i = g(U,V; θe) to estimate the prediction loss eu,i, where
U is the user feature embedding and V is the item feature
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embedding. We substitute LIPS in the DT-IPS loss by the
following DR loss to obtain the DT-DR loss

LDR(P
′,Q′,U,V) = Lerr

DR(P
′,Q′; θr) + Limp

DR (U,V; θe),

where the DR loss for debiased learning is on P′ and Q′

Lerr
DR(P

′,Q′; θr) =
1

|D|
∑

(u,i)∈D

(
êu,i +

ou,i(eu,i − êu,i)

p̂u,i

)
,

and the error imputation model loss is on U and V

Limp
DR (U,V; θe) =

1

|D|
∑

(u,i)∈D

ou,i(eu,i − êu,i)
2

p̂u,i
.

We summarize the propensity and prediction collaborative
filtering with the orthogonal constraints in the proposed dis-
entanglement approach in Figure 2.

C. Training Efficiency

Table II compares the training efficiency of various debi-
asing methods in terms of the parameter size and training
loss, as the main factors affecting the training efficiency.
For the parameter size, we compared the embedding size
and hidden layer parameter size, respectively, by taking the
ESMM [19], which is widely used in industrial applications, as
a benchmark. Compared to vanilla IPS and DR methods with
2x and 3x embedding sizes, respectively, Multi-IPS/DR [16]
and ESCM2-IPS/DR [18] have the same embedding size as
the ESMM due to the inclusion of an embedding lookup table
to share embeddings among the propensity, computation, and
prediction models. For our proposed DT-IPS and DT-DR, as
shown in Figure 2, the embedding of the prediction model is
contained in that of the propensity model, whereas the em-
bedding of the imputation model of DT-DR incurs additional
overhead. As a result, DT-IPS and DT-DR have the same and
2x the embedding size compared to ESMM, respectively. In
addition, the IPS and DR methods have the same and 2x the
hidden layer parameter size compared to ESMM, respectively,
due to the DR methods requiring additional parameters from
the imputation model, leading to smaller bias in practice.

Moreover, the number and type of training losses also signif-
icantly affect the number and time of backpropagation. Com-
pared to Multi-IPS and Multi-DR, which use separate IPS and
DR losses to train all models, ESCM2-IPS and ESCM2-DR
further use propensity and post-view clickthrough&conversion
rate (CTCVR) losses to enhance the debiasing performance.
Instead, our DT-IPS and DT-DR use propensity and disentan-
gling losses, where the latter requires the computation of the
F norm for a large user-item matrix, which may result in a
slight additional time overhead.

V. SEMI-SYNTHETIC EXPERIMENTS

Experiment Setup. Following the previous studies [6],
[15], [17], [58], we conduct semi-synthetic experiments on the
MovieLens 100K (ML-100K)1 dataset, which contains 943

1https://grouplens.org/datasets/movielens/100k/

TABLE II: Comparison of parameter numbers in terms of
embedding size, hidden layer size, and training loss.

Parameter size Training loss

Method Embedding Hidden layer Propensity CTCVR Disentangle

ESMM [19] 1× 1× ✓ ✓ ×

IPS [6] 2× 1× ✓ × ×
Multi-IPS [16] 1× 1× × × ×
ESCM2-IPS [18] 1× 1× ✓ ✓ ×
DT-IPS (ours) 1× 1× ✓ × ✓

DR [15], [17], [58] 3× 1.5× × × ×
Multi-DR [16] 1× 1.5× × × ×
ESCM2-DR [18] 1× 1.5× ✓ ✓ ×
DT-DR (ours) 2× 1.5× ✓ × ✓

users and 1,682 items with 100,000 observed MNAR five-scale
ratings. The main purpose is to verify the effectiveness of the
proposed method when the rating ru,i affects the observation
ou,i. The dataset pre-processing procedure and the experiment
details are shown below:
Step 1. Following the previous studies [6], [15], [17], we
generate the conversion probabilities for all user-item pairs
using the matrix factorization (MF) [59]. Specifically, we first
minimize the mean squared loss on the observed ratings to
train the MF model and generate a rating for each user-item
pair. Then we clip the generated rating to [0, 5], denoted as
γu,i, and use the following formula for standardization to
ensure the generated conversion probability ηu,i ∈ [0, 1] for
all user-item pairs:

ηu,i = ϵ+ (1− ϵ)
γu,i − γmin

γmax − γmin
, ∀(u, i) ∈ D, (11)

where γmin and γmax are the minimum and maximum value of
the generated ratings after clipping, respectively, and ϵ ∈ [0, 1]
is a pre-specified hyper-parameter to control the noise.
Step 2. To make the conversion probability affect the observed
probability, we set the observed probability as pu,i = (2ηu,i −
1)ρ for all user-item pairs, where ρ is the hyper-parameter to
control the observed data sparsity and the degree of correlation
between ηu,i and pu,i.
Step 3. We sample the binarized conversion result ru,i and the
observed indicator ou,i by the following Bernoulli distribution:

ru,i ∼ Bern(ηu,i), ou,i ∼ Bern(pu,i), ∀(u, i) ∈ D.

Then we use the generated ru,i and ou,i to train the prediction
model. Since we directly use ηu,i to generate pu,i, so there is
a strong correlation between the observed indicators ou,i and
the conversion results ru,i.

Performance Analysis. To verify the effectiveness of the
proposed method, Table III shows the performance of the pro-
posed method and the baseline methods under varying ρ. Three
metrics are used to evaluate the performance: mean square
error (MSE), mean absolute error (MAE), and NDCG@50
(N@50). First, the proposed method achieves overall better
performance when ρ is larger. This is because the ru,i has
a larger influence on ou,i with a larger ρ, which strength-
ens the necessity of disentangling. Meanwhile, the proposed
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TABLE III: Performance comparison on the ML-100K with varying ρ. The best result is bolded and the second is underlined.

Metrics MSE MAE N@50

ρ 0.5 0.75 1 1.25 1.5 0.5 0.75 1 1.25 1.5 0.5 0.75 1 1.25 1.5

MF 0.0154 0.0148 0.0142 0.0138 0.0134 0.1033 0.1005 0.0981 0.0960 0.0942 0.8015 0.8015 0.8016 0.8016 0.8015
IPS 0.0124 0.0126 0.0128 0.0129 0.0130 0.0863 0.0870 0.0876 0.0881 0.0885 0.8016 0.8017 0.8017 0.8017 0.8017
DR 0.0123 0.0124 0.0126 0.0128 0.0130 0.0859 0.0865 0.0871 0.0877 0.0886 0.8017 0.8016 0.8016 0.8016 0.8016

Multi-IPS 0.0139 0.0139 0.0139 0.0139 0.0138 0.0916 0.0917 0.0917 0.0916 0.0917 0.8017 0.8016 0.8016 0.8016 0.8016
Multi-DR 0.0243 0.0308 0.0361 0.0402 0.0435 0.1231 0.1383 0.1493 0.1577 0.1627 0.8014 0.8009 0.8009 0.8014 0.8015

ESCM2-IPS 0.0139 0.0139 0.0139 0.0139 0.0139 0.0913 0.0913 0.0913 0.0913 0.0913 0.8017 0.8016 0.8017 0.8017 0.8017
ESCM2-DR 0.0173 0.0214 0.0265 0.0325 0.0394 0.1044 0.1187 0.1350 0.1531 0.1719 0.8016 0.8015 0.8014 0.8015 0.8014

DT-IPS 0.0193 0.0109 0.0092 0.0103 0.0121 0.1155 0.0815 0.0742 0.0795 0.0874 0.8022 0.8021 0.8020 0.8019 0.8019
DT-DR 0.0118 0.0103 0.0098 0.0097 0.0097 0.0845 0.0784 0.0764 0.0762 0.0766 0.8019 0.8020 0.8018 0.8017 0.8017
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Fig. 3: MSE and MAE of IPS and DR estimators with varying noise hyper-parameter ϵ.

method outperforms the baseline methods with varying hyper-
parameter ρ, which further verifies the effectiveness of the
proposed method.

Moreover, we vary hyper-parameter ϵ in equation (11) to
further validate the effectiveness of the proposed method
under different data generation mechanisms. The experimental
results are shown in Figure 3. First, as ϵ increases, the MSE
and MAE of all methods become lower, which is because
the heterogeneity between the user-item pairs is reduced. Sec-
ond, the proposed method stably and statistically significantly
outperforms the baselines under varying ϵ, demonstrating the
effectiveness of our method under different settings.

VI. REAL-WORLD EXPERIMENTS

Datasets. We conduct the real-world experiments on three
widely used real-world datasets including COAT2, YAHOO3

and a large-scale industrial dataset KUAIREC4 [62]. COAT
contains ratings from 290 users to 300 items. Each user
evaluates 24 items, containing 6,960 MNAR ratings in total.
Meanwhile, each user evaluates 16 randomly selected items,
which results in 4,640 MAR ratings. YAHOO contains a total of
311,704 MNAR and 54,000 MAR ratings from 15,400 users to
1,000 items. KUAIREC contains 12,530,806 MNAR watching
ratio from 7,176 users to 10,728 videos, as well as a separate
MAR test set where the users are asked to rate all test items.

2https://www.cs.cornell.edu/˜schnabts/mnar/
3http://webscope.sandbox.yahoo.com/
4https://github.com/chongminggao/KuaiRec

For the first two five-scale datasets, the ratings less than three
are clipped to 0, otherwise to 1. For KUAIREC, the video
records less than one are clipped to 0, otherwise to 1.

Baselines. In pursuit of a comprehensive comparison, we
use matrix factorization (MF) [59] as our base model, and
we have compared the proposed method with the follow-
ing debiased baseline methods, including IPS [6], DR [58],
TDR [50], and Stable-DR [49]; joint learning methods such
as DR-JL [15], MRDR-JL [17], DR-BIAS [53], DR-MSE [53],
MR [52], and TDR-JL [50]; multi-task learning approaches in-
cluding Multi-IPS [16], Multi-DR [16], ESMM [19], ESCM2-
IPS [18], ESCM2-DR [18], IPS-V2 [61], and DR-V2 [61];
the information bottleneck based methods: CVIB [60] and
DIB [21]. The details of each method are shown below:

• MF [59]: MF is the traditional method that factorizes
the user-item matrix into user and item latent vectors and
uses the inner product between the latent vector to impute
missing values and make predictions.

• IPS [6]: IPS utilizes the propensity to reweight the
observed prediction error to obtain unbiased estimation.

• DR [58]: DR combines the merits of inverse propensity
weighting and error imputation to achieve the double
robustness property to reduce estimation error.

• TDR [50]: TDR is one of the state-of-the-art DR method
that learns imputation with a parameterized imputation
model and a nonparametric boosting strategy.

• Stable-DR [49]: Stable-DR has a weaker reliance on
extrapolation and has bounded bias, variance, and gen-
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TABLE IV: Performance comparison on COAT, YAHOO, and KUAIREC. The two best results are bolded, and the best baseline
results are underlined. ∗ means statistically significant (p-value ≤ 0.05) using the paired t-test compared with the best baseline.

COAT YAHOO KUAIREC

Method AUC N@5 R@5 AUC N@5 R@5 AUC N@50 R@50

MF [59] 0.696±0.007 0.641±0.007 0.453±0.010 0.680±0.002 0.648±0.002 0.415±0.002 0.741±0.002 0.725±0.001 0.800±0.002

CVIB [60] 0.700±0.006 0.643±0.011 0.456±0.011 0.678±0.001 0.634±0.001 0.393±0.002 0.744±0.014 0.737±0.015 0.817±0.016

DIB [21] 0.721±0.004 0.645±0.010 0.455±0.010 0.689±0.001 0.639±0.001 0.400±0.001 0.781±0.008 0.792±0.007 0.845±0.009

IPS [6] 0.698±0.006 0.640±0.011 0.455±0.011 0.680±0.002 0.659±0.002 0.427±0.002 0.730±0.001 0.714±0.002 0.797±0.002

DR [58] 0.700±0.006 0.658±0.009 0.462±0.010 0.646±0.003 0.676±0.002 0.435±0.001 0.709±0.002 0.680±0.002 0.782±0.002

DR-JL [15] 0.717±0.006 0.650±0.005 0.451±0.006 0.688±0.001 0.648±0.001 0.409±0.001 0.776±0.006 0.788±0.006 0.841±0.009

MRDR-JL [17] 0.718±0.004 0.666±0.007 0.451±0.006 0.688±0.001 0.647±0.002 0.408±0.002 0.780±0.005 0.792±0.005 0.840±0.009

DR-BIAS [53] 0.714±0.008 0.641±0.010 0.450±0.011 0.686±0.001 0.653±0.001 0.430±0.002 0.754±0.002 0.740±0.002 0.816±0.003

DR-MSE [53] 0.720±0.004 0.641±0.009 0.449±0.009 0.687±0.002 0.659±0.002 0.432±0.002 0.754±0.002 0.742±0.003 0.817±0.002

MR [52] 0.727±0.004 0.654±0.009 0.469±0.009 0.700±0.002 0.682±0.002 0.449±0.002 0.792±0.002 0.799±0.003 0.843±0.002

TDR [50] 0.712±0.008 0.644±0.010 0.451±0.011 0.690±0.002 0.691±0.003 0.457±0.003 0.753±0.002 0.722±0.002 0.820±0.001

TDR-JL [50] 0.719±0.008 0.623±0.011 0.448±0.011 0.688±0.001 0.649±0.001 0.413±0.002 0.778±0.005 0.790±0.007 0.837±0.011

Stable-DR [49] 0.717±0.009 0.613±0.015 0.426±0.011 0.689±0.001 0.651±0.003 0.414±0.003 0.761±0.004 0.786±0.003 0.834±0.006

Multi-IPS [16] 0.720±0.006 0.600±0.012 0.437±0.008 0.683±0.002 0.656±0.002 0.435±0.003 0.764±0.019 0.758±0.020 0.837±0.020

Multi-DR [16] 0.721±0.005 0.650±0.005 0.459±0.008 0.686±0.003 0.660±0.002 0.420±0.002 0.760±0.014 0.767±0.012 0.826±0.012

ESMM [19] 0.708±0.008 0.681±0.009 0.479±0.010 0.668±0.002 0.730±0.001 0.495±0.002 0.743±0.004 0.788±0.004 0.836±0.003

ESCM2-IPS [18] 0.714±0.011 0.654±0.025 0.469±0.018 0.688±0.001 0.673±0.003 0.445±0.004 0.781±0.001 0.770±0.002 0.836±0.002

ESCM2-DR [18] 0.725±0.006 0.645±0.012 0.450±0.007 0.693±0.002 0.688±0.003 0.449±0.003 0.791±0.001 0.799±0.001 0.854±0.001

IPS-V2 [61] 0.724±0.004 0.629±0.009 0.455±0.009 0.685±0.002 0.646±0.002 0.457±0.002 0.774±0.002 0.768±0.003 0.838±0.002

DR-V2 [61] 0.734±0.004 0.646±0.009 0.452±0.009 0.690±0.002 0.660±0.002 0.475±0.002 0.783±0.002 0.788±0.003 0.842±0.002

DT-IPS (ours) 0.733±0.005 0.715∗±0.014 0.503∗±0.011 0.715∗±0.003 0.740∗±0.002 0.503∗±0.002 0.806∗±0.001 0.813∗±0.001 0.869∗±0.001
DT-DR (ours) 0.738∗±0.008 0.705∗±0.011 0.509∗±0.014 0.707∗±0.002 0.765∗±0.001 0.526∗±0.001 0.803∗±0.001 0.797±0.001 0.859∗±0.001

eralization error bound simultaneously.
• DR-JL [15]: DR-JL joint learns the rating prediction

model and error imputation model to achieve promising
prediction performance guarantees based on vanilla DR.

• MRDR-JL [17]: MRDR-JL further reduces the DR esti-
mator’s variance while retaining its double robustness.

• DR-BIAS [53]: DR-BIAS is a DR-based method that
further controls the bias of the DR loss.

• DR-MSE [53]: DR-MSE is an extension of the vanilla
DR that balances the bias and variance flexibly.

• MR [52]: MR is an enhanced version of DR, which
combines multiple propensity models and imputation
models, and greatly relaxes the unbiased condition.

• TDR-JL [50]: TDR-JL adopts joint learning on TDR.
• Multi-IPS [16]: Multi-IPS utilizes the multi-task learning

on vanilla IPS estimator to reduce the bias.
• Multi-DR [16]: Similar to Multi-IPS, Multi-DR uses the

multi-task learning on vanilla DR estimator.
• ESMM [19]: ESMM trains the prediction model on the

entire space to align the observed and target population.
• ESCM2-IPS [18]: ESCM2-IPS employs a counterfactual

risk minimizer as a regularizer in ESMM to address
biases on the prediction inaccuracy estimation.

• ESCM2-DR [18]: ESCM2-DR adds an imputation model
based on ESCM2-IPS to guarantee the double robustness.

• IPS-V2 [61]: IPS-V2 utilizes the balancing propensities
to achieve smaller variance compared to the IPS.

• DR-V2 [61]: DR-V2 adds an error imputation model
based on IPS-V2 to guarantee the double robustness.

• CVIB [60]: CVIB derives a contrastive information loss
and an output confidence penalty to facilitate balanced
learning between the factual and counterfactual domains.

• DIB [21]: DIB constrains the model to learn a biased
embedding vector with independent biased and unbiased
components in the training phase and uses only the
unbiased component in the test phase.

Experimental Protocols. Following previous studies [6],
[15], [53], we adopt three widely used evaluation metrics,
AUC, NDCG@K (N@K) and Recall@K (R@K), where
K = 5 for Coat and Music, while K = 50 for KuaiRec.
NDCG@K evaluates the quality of recommendations by
considering the importance of each item’s position based on
discounted gains:

DCGu@K =
∑

i∈Du
test

I(ẑu,i ≤ K)

log(ẑu,i + 1)
,

NDCG@K =
1

|U|
∑
u∈U

DCGu@K

IDCGu@K
,

where Du
test denotes all the items rated by the user u in test

data, ẑu,i represents the ranking of item i in the recommended
list for user u, and IDCG represents the best possible DCG.
In addition, the formula of Recall@K is as follows:

Recallu@K =

∑
i∈Du

test
I(ẑu,i ≤ K)

min(K, |Du
test|)

,

Recall@K =
1

|U|
∑
u∈U

Recallu@K.

Experimental Details. Throughout the parameter-tuning
process, all methods are implemented on PyTorch with
Adam as the optimizer5. We tune the learning rate

5In all experiments, we use Tesla T4 GPU as the computational resource.
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TABLE V: Ablation studies in terms of the training losses. The best results are bolded, and the second best result is underlined.

Training loss COAT YAHOO KUAIREC

Method β γ AUC N@5 R@5 AUC N@5 R@5 AUC N@50 R@50

DT-IPS

× × 0.717 0.678 0.483 0.700 0.726 0.493 0.768 0.749 0.831
× ✓ 0.722 0.685 0.492 0.707 0.732 0.499 0.800 0.809 0.864
✓ × 0.726 0.689 0.488 0.711 0.738 0.501 0.802 0.810 0.863
✓ ✓ 0.733 0.715 0.503 0.715 0.740 0.503 0.806 0.813 0.869

DT-DR

× × 0.703 0.632 0.450 0.675 0.742 0.503 0.783 0.774 0.846
× ✓ 0.723 0.671 0.483 0.702 0.763 0.523 0.796 0.790 0.851
✓ × 0.727 0.683 0.506 0.705 0.762 0.524 0.799 0.792 0.857
✓ ✓ 0.738 0.705 0.509 0.707 0.765 0.526 0.803 0.797 0.859
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Fig. 4: Sensitivity analysis of hyper-parameter β on the YAHOO and KUAIREC datasets.

in {0.005, 0.01, 0.05, 0.1}, batch size in {32, 64, 128, 256}
for COAT and {1024, 2048, 4096, 8192} for YAHOO and
KUAIREC, and embedding dimension in {2, 4, 8, 16, 32, 64}
for COAT and {8, 16, 32, 64, 128, 256} for YAHOO and
KUAIREC. For our method, we tune the weights β and γ in
{1e− 6, 5e− 6, 1e− 5, ..., 5e− 2, 1e− 1}.

A. Performance Comparison

We train the prediction models with biased ratings and
evaluate them with unbiased ratings on three widely used real-
world datasets, COAT, YAHOO, and a large-scale industrial
dataset KUAIREC. The results are shown in Table IV, and
we have the following findings. For the COAT and YAHOO
datasets, almost all debiasing methods exhibit better perfor-
mance than the base model, which indicates the necessity of
modeling data-missing mechanisms in MNAR settings. Next,
DR-based methods outperform IPS-based methods overall, and
the multi-task learning method ESMM achieves the most com-
petitive performance among all baselines, which is attributed
to the fact that ESMM models rating prediction task over the
entire space to eliminate the gap between observed and target
population. Moreover, the proposed method stably outperforms
baseline methods on all datasets, due to the effectiveness of the
disentangling and multi-task learning to accurately estimate
the MNAR propensities.

For KUAIREC, we find that two DR-enhanced methods, MR
and ESCM2-DR, achieve the most competitive performance
among the baselines. This is attributed to the relaxation of
the unbiasedness condition by MR using multiple candidate
propensity and imputation models, as well as the counterfac-

tual risk minimizer on the entire space in ESCM2-DR. Besides,
despite the proposed DT-DR being slightly underperformed by
ESCM2-DR in terms of NDCG@50, DT-DR significantly out-
performs ESCM2-DR in terms of both AUC and Recall@50,
leading to the optimal overall results. This further provides
empirical evidence that the real-world data are MNAR and
verifies the effectiveness of the proposed method.

B. Ablation Study
The disentangling loss and regularization loss play an

important role in our method. To investigate the reason for
the performance improvement of our method, Table V shows
the ablation experiment results on all three datasets. First,
the proposed method with both losses always achieves the
best performance and the method with only disentangling loss
achieves secondary performance. It is because the missing
regularization term simply controls the F norm to prevent
overfitting, which is not the main focus in data MNAR.
Meanwhile, the method with only the regularization term
performs worse than the former two because there is no
guarantee of the disentangling quality. Finally, without both
the regularization term and disentangling term will lead to the
worst performance, which further verifies the effectiveness and
rationality of our method.

C. Sensitivity Analysis
The hyper-parameter β controls the degree of independence

of the disentangled two parts, that is, the user embedding
p′
u and p′′

u and the item embedding q′
i and q′′

i . Figures
4(a) and 4(b) show the sensitivity analysis results of hyper-
parameter β on the prediction performance using the YAHOO
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TABLE VI: Comparison of parameter numbers, training time (minutes), and inference time (milliseconds per sample).

COAT YAHOO KUAIREC

Method Parameters Training Inference Parameters Training Inference Parameters Training Inference

ESMM [19] 2.30×104 0.40 1.06 2.12×106 2.51 1.61 1.02×107 66.53 0.66

IPS [6] 3.77×104 0.53 0.92 4.19×106 1.92 1.07 1.83×107 50.20 0.78
Multi-IPS [16] 2.30×104 1.13 0.94 2.12×106 1.30 1.70 1.02×107 82.08 2.67
ESCM2-IPS [18] 2.30×104 1.08 1.34 2.12×106 2.63 1.86 1.02×107 102.22 1.39
DT-IPS (ours) 1.88×104 1.07 1.18 2.09×106 3.92 1.01 0.92×107 183.76 0.92

DR-JL [15] 5.66×104 1.21 1.40 6.29×106 3.10 1.91 2.75×107 139.37 0.74
Multi-DR [16] 2.51×104 1.20 1.47 2.14×106 3.19 2.15 1.07×107 117.13 1.30
ESCM2-DR [18] 2.51×104 1.14 1.01 2.14×106 2.84 2.12 1.07×107 143.34 1.71
DT-DR (ours) 3.77×104 1.45 1.45 4.19×106 4.92 0.73 1.83×107 197.48 0.94

(a) AUC on COAT (b) Training time on COAT

(c) AUC on YAHOO (d) Training time on YAHOO

(e) AUC on KUAIREC (f) Training time on KUAIREC

Fig. 5: Effect of data sparsity on AUC and training time.

and KUAIREC datasets. We find that the moderate choices
of β such as 1e − 4 or 1e − 5 lead to optimal performance.
On one hand, there will be no guarantee of the disentangling
quality when β goes small or reaches at 0, which harms the
prediction performance. On the other hand, when β goes large,
the performance also gets worse because putting too much
attention on the disentangling will make the optimization for
other tasks such as rating prediction or propensity learning
insufficient, resulting in larger value of other losses, which
also harms the performance. In addition, Figures 4(c) and 4(d)
show the effect of the hyper-parameter β on the disentangling
loss scale, which is the summation of two F norms in the dis-

entangling loss on the YAHOO and KUAIREC datasets. As the
number of iterations increases, the value of the disentangling
loss decreases. Meanwhile, as the increasing of β, the value
of the disentangling loss converges at a faster speed.

D. Model Training and Inference Time

Algorithm complexity and algorithm runtime are very im-
portant in the database field. We report the results on the
number of parameters, training time, and inference time in
Table VI. First, note that many previous methods based on
the embedding parameter sharing mechanism cannot be used
directly with MF as the base model (which would result in an
identical prediction model, propensity model, and imputation
model). Therefore, we use a shallow MLP to implement these
methods after the embedding layer. The DT-IPS method has
the fewest parameters among the IPS-based methods and DT-
DR has much fewer parameters compared with the DR-JL
method, which demonstrates the parameter efficiency of our
methods so that DT-IPS and DT-DR consume less storage
space. In addition, the running time is not much different from
the baseline methods on smaller datasets (COAT and YAHOO),
but takes 1.5-2 times longer than the previous multi-task
learning methods on a larger industrial dataset (KUAIREC).
The reason is that for larger datasets, the multiplication of
matrices consumes more time when computing the norms.
Notably, the debiasing prediction performance of the proposed
methods significantly outperform the baseline methods in
almost all the cases as shown in Table IV.

E. Scalability

Data sparsity is also a widespread concern in the database
field, which motivates us to analyze the recommendation
performance and runtime of our method and baselines under
different data sparsity. The results are shown in Figure 5.
The runtimes of our method under different data sparsity
are all within 2 times compared to the baseline methods,
and the runtimes of our method are almost the same as
the baseline methods on the COAT dataset. Meanwhile, our
method significantly outperforms the baseline methods, which
further proves the effectiveness of our method.
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VII. RELATED WORK

Missing Not At Random (MNAR). MNAR problem is
ubiquitous in many fields such as information retrieval [63],
biology [28], and social science [64]. Identifying the model
parameters with data MNAR is challenging because the full
data is only partially observed. Several previous studies con-
sidered the identifiability problem for some specific parametric
and semi-parametric models, e.g., probit regression, normal
mixture, and t mixture model with non-monotone missing
mechanisms [55], [65]–[68]. Nevertheless, many parametric
models of interest, e.g., logistic regression, are not identifiable
under MNAR without imposing additional assumptions [67].

Several studies explored the identifiability results using
additional informative variables. For example, [69]–[71] dis-
cussed the conditions for identifiability by leveraging an
instrumental variable that only affects the missing mechanism
but not the outcome. In addition, [67] and [72] established the
identifiability results by a shadow variable. Such a variable is
associated with the potentially unobserved variable conditional
on the observed data, but independent of the missing mecha-
nism conditional on both the observed and missing values.

Even after the establishment of the identifiability results,
another challenge arises with data MNAR in the parame-
ter estimation process, which is the model misspecification
problem. To address such issues, likelihood-based inference
[68], [73], imputation-based methods [74], inverse probability
weighting [55], and doubly robust estimation [71] have been
developed. These existing estimation methods necessitate the
correct model specification of either the propensity score or
the imputation model. However, bias may arise due to the
specification error of parametric models, given their limited
flexibility. Moreover, model misspecification is more likely in
the presence of missing values. Different from the previous
works where the informative variables are pre-specified, we
propose a novel multi-task learning method to disentangle a
learnable auxiliary representation, thereby ensuring the iden-
tifiability of the MNAR propensity.

Debiased Recommendations. Recommender systems are
considered an effective tool for solving the information over-
load problem by searching structured data such as user
features, item attributes, and user-item interactions stored
in a database, and then selecting relevant items for each
user [75]–[79]. However, the interactions recorded in the
database were found to contain various biases [10], such as
popularity bias [80], model selection bias [81], user self-
selection bias [82], position bias [83], conformity bias [84],
and confounding bias [42]. Those biases will result in the
distribution of training data (observed population) different
from that of test data (target population), leading to the
challenges of achieving unbiased learning [85]–[92].

To achieve unbiased learning, many methods have been
proposed. For example, [6] proposed the IPS method to
debiasing for explicit feedback, and [93] extended it to the
implicit feedback. [15] proposed a doubly robust joint learning
(DR-JL) approach by enhancing the IPS method with an extra

error imputation model and update the imputation model and
prediction model alternately. In addition, [21], [60], [94] pro-
posed to use information theory to mitigate the bias issue, [1],
[95], [96] attempted to guarantee prediction performance by
modeling users’ behavior, and [97]–[99] adopted contrastive
learning to train prediction model.

The above pioneering works have inspired a series of
literature in recent years. We now focus on the recent meth-
ods that toward improving the limitations of DR-JL, such
as MRDR [17] for reducing the variance, DR-MSE [53]
for achieving better bias-variance trade-off, TDR [50] for
achieving robustness to inaccurate pseudo-labelings, SDR [49]
for reducing the bias, variance, and enhancing the robust-
ness to small propensities, DR-V2 [61] for learning bal-
anced propensities, N-DR [100] for addressing selection bias
under neighborhood effect, CDR [101] for eliminating the
poisonous imputations, CounterCLR [102] for aligning factual
and counterfactual prediction, and AKBDR [103] for adap-
tively learning balanced propensities using kernel function. By
combining multiple propensity models and imputation models,
MR [52] proposed a multiple robust debiasing method that
achieves unbiasedness if any of the propensity models or
imputation models, or a linear combination of them is accurate.
Besides, several multi-task learning methods are developed
for debiasing and show competitive performance empirically,
such as ESMM [19], Multi-DR [16], and ESCM2-DR [18].
Moreover, [35], [51], [104]–[106] used an extra small uniform
set for improving the debiasing performance. Specifically,
[51] adaptively assigned propensity weights to biased training
ratings, [35] leveraged the small uniform set to optimize
the debiasing parameters, [104] used knowledge distillation
for counterfactual recommendation, [105] proposed a unified
multi-task debiasing approach, and [106] adaptively learned
balance coefficients of biased samples. Unlike most existing
debiasing methods that are biased on data MNAR, we propose
a novel disentanglement approach for unbiased prediction
using data MNAR without imposing strong assumptions.

VIII. CONCLUSION

In this paper, we formally summarized three different miss-
ing data mechanisms, i.e., MCAR, MAR, and MNAR, and
found that previous propensity-based debiasing methods for
addressing selection bias only achieve unbiasedness under the
data MCAR and MAR. To achieve unbiased learning with
data MNAR, we emphasize three key steps: (1) Setting the
target MNAR propensities to depend on both observation
indicators and true ratings; (2) Ensuring the identifiability of
MNAR propensities by obtaining the auxiliary variables by
disentanglement; (3) Employing MF as the base model to
train the propensity model and the prediction model simulta-
neously. Extensive semi-synthetic and real-world experiments
demonstrate the superiority of the proposed method in terms
of debiasing performance and training efficiency. A limitation
of our method is that its validity depends on whether the
auxiliary variable can be successfully disentangled. However,
it is empirically difficult to obtain precise auxiliary variables.
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